首页> 外文OA文献 >Dynamic Computation Offloading for Mobile-Edge Computing with Energy Harvesting Devices
【2h】

Dynamic Computation Offloading for Mobile-Edge Computing with Energy Harvesting Devices

机译:带能量的移动边缘计算的动态计算卸载   收获设备

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mobile-edge computing (MEC) is an emerging paradigm to meet theever-increasing computation demands from mobile applications. By offloading thecomputationally intensive workloads to the MEC server, the quality ofcomputation experience, e.g., the execution latency, could be greatly improved.Nevertheless, as the on-device battery capacities are limited, computationwould be interrupted when the battery energy runs out. To provide satisfactorycomputation performance as well as achieving green computing, it is ofsignificant importance to seek renewable energy sources to power mobile devicesvia energy harvesting (EH) technologies. In this paper, we will investigate agreen MEC system with EH devices and develop an effective computationoffloading strategy. The execution cost, which addresses both the executionlatency and task failure, is adopted as the performance metric. Alow-complexity online algorithm, namely, the Lyapunov optimization-baseddynamic computation offloading (LODCO) algorithm is proposed, which jointlydecides the offloading decision, the CPU-cycle frequencies for mobileexecution, and the transmit power for computation offloading. A uniqueadvantage of this algorithm is that the decisions depend only on theinstantaneous side information without requiring distribution information ofthe computation task request, the wireless channel, and EH processes. Theimplementation of the algorithm only requires to solve a deterministic problemin each time slot, for which the optimal solution can be obtained either inclosed form or by bisection search. Moreover, the proposed algorithm is shownto be asymptotically optimal via rigorous analysis. Sample simulation resultsshall be presented to verify the theoretical analysis as well as validate theeffectiveness of the proposed algorithm.
机译:移动边缘计算(MEC)是一种新兴的范例,可以满足来自移动应用程序的不断增长的计算需求。通过将计算密集型工作负载卸载到MEC服务器上,可以极大地提高计算体验的质量(例如执行延迟)。但是,由于设备上的电池容量有限,当电池电量用尽时,计算将被中断。为了提供令人满意的计算性能并实现绿色计算,寻找可再生能源来通过能量收集(EH)技术为移动设备供电具有重要意义。在本文中,我们将研究带有EH设备的绿色MEC系统,并开发有效的计算分流策略。解决执行延迟和任务失败的执行成本被用作性能指标。提出了一种低复杂度的在线算法,即基于Lyapunov优化的动态计算卸载(LODCO)算法,该算法共同确定卸载决策,移动执行的CPU周期频率以及计算卸载的发射功率。该算法的独特优势在于,决策仅取决于瞬时辅助信息,而无需计算任务请求,无线信道和EH过程的分配信息。该算法的实现只需要解决每个时隙中的确定性问题,就可以以封闭形式或二等分搜索获得最优解。此外,通过严格的分析表明该算法是渐近最优的。应当给出样本仿真结果,以验证理论分析并验证所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号